US009317100B2

a2z United States Patent (10) Patent No.: US 9,317,100 B2
Kitchin et al. (45) Date of Patent: Apr. 19, 2016
(54) ACCELERATED CACHE RINSE WHEN (58) Field of Classification Search
PREPARING A POWER STATE TRANSITION CPC . GO6F 12/00; GO6F 12/0859; GOG6F 12/0868;
GOG6F 12/0871; GO6F 12/12
(71) Applicant: ADVANCED MICRO DEVICES, USPC ..c.ocevven. 711/100, 117, 118, 133, 154, 200
INC., Sunnyvale, CA (US) See application file for complete search history.
(72) Inventors: Paul E. Kitchin, Austin, TX (US); (56) References Cited
William L. Walker, Fort Collins, CO
(US) U.S. PATENT DOCUMENTS
H . 3 : 7,941,683 B2* 5/2011 Branoveretal. ... 713/323
(73) - Assignee: gfﬁ}z‘ig Dg:r(t’}]s))evwes’ Ine., 2014/0095794 Al* 42014 Mosesetal. ... 711/128
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Tuan Thai
U.S.C. 154(b) by 297 days.
57 ABSTRACT
(21) Appl. No.: 13/738,378 Methods, integrated circuit devices, and fabrication pro-
o cesses relating to power management transitions of a compute
(22) Filed: Jan. 10, 2013 unit comprising a cache are presented. One method includes,
(65) Prior Publication Data responsive to an indication that the compute unit is attempting
to enter a low power state, detecting at least one line of the
US 2014/0195832 Al Jul. 10, 2014 cache differing from the corresponding line in memory, writ-
ing differing data from the at least one differing line to the
(51) Int.CL memory, flushing at least one remaining differing line of the
GOOF 12/00 (2006.01) cache, and permitting the compute unit to enter the low power
GO6F 1/32 (2006.01) state, wherein the detecting and the writing are performed at
GOGF 12/08 (2006.01) a first frequency prior to the indication and at a second fre-
(52) US.CL quency subsequent the indication, and the second frequency
CPC GOG6F 1/3243 (201301), GO6F 12/0804 is h]gher than the first frequency,

(2013.01); GO6F 2212/1032 (2013.01); YO2B
60/1225 (2013.01)

23 Claims, 3 Drawing Sheets

190

Peripheral
Device(s)

Compute Unit {CU)

100

Cache Rinser

198
185
K Output /
Device(s) 143

-
[{a]
(]

'-..--.---.-...-.---.-.---..--)..

120
180

Input
Device(s)

Graphics Card

A\ A

Graphics Processing
Unit {(GPU or
Graphics Processor)

Display

Linit(s)

US 9,317,100 B2

Sheet 1 of 3

Apr. 19,2016

U.S. Patent

112

b FanDid

soBpBIU O

0G4 obri0ig BB

143

(108500014 somdessy

abpuguinog

-

]

abpugUHON

T 5

g

7

CEE T Y E R PN

10 D) Wun
Buissastid sodeusy

piasy sowydesn

6k .
\\\\\WWW

ayoe)

lasuiy syoeny |

(D) pur sindwo)

J

(R Y Y P Y P R Y NP Y YR R PP IS RSP TR Y Y Y)

¥

ot

Wy
()]
-~

{shiun
Aggdsig

{s)9010803
ndug

{z)anaa(]
wnding

{s¥aoire
jeieydusy

DLL

08t

—

G814

061

US 9,317,100 B2

Sheet 2 of 3

Apr. 19,2016

U.S. Patent

g8 FHNOId

(,qed,}) Anjioey uonesLGEY

6L

ve NSO

———————

JOSSEI0I

diyD/eiQ oSS

& JNDId

[
&)
e

]
<t
-

no

JOSE82014

US 9,317,100 B2

Sheet 3 of 3

Apr. 19,2016

U.S. Patent

$PBAES 81818 (10 A.!

oSy

g

ON

/ 53A

{s}auy BB
Buusyip
Bujuizwed

ysni4

Bmod Mo
IBWS O 117

¥ RNDIH
Gy
oy
\A ‘ \;mo%
Aouenbeuy Acusnbaly)
punoas puooes
1e Blep 12 {s}euy syse DA
Buusgip SiAA Buusyip ps10Qg
OvP Set

SAA
0Ly
\momw
{BES Aouenbay
JOMOd Mo JO1US 151 18 BjEp
o} Bupdwspe BULISLID S
1D

\lm.o_nv

ON

Y

Asusnbsip 1say
1e {s)aul Byueo
Bupesiip 10918

US 9,317,100 B2

1
ACCELERATED CACHE RINSE WHEN
PREPARING A POWER STATE TRANSITION

BACKGROUND

1. Technical Field

Generally, the disclosed embodiments relate to integrated
circuits, and, more particularly, to power management of a
compute unit comprising a cache.

2. Description of the Related Art

A computer system comprising a compute unit (e.g., a core
of'a multi-core central processing unit (CPU)) can place the
compute unit into a lower power state when it is not needed to
perform user- or system-requested operations. Placing an
unneeded compute unit into a lower power state may reduce
power consumption and heat generation by the computer
system, thereby reducing operating expenses of the computer
system and extending the service life of the computer system
or components thereof. It is common for acomputer system to
contain a central power management unit (PMU) to orches-
trate the low power transitions for compute unit(s) and/or
other components within the system. Typically, the PMU can
make requests directly to a compute unit to power down and
power up.

A compute unit may have a cache. Typically, a cache is
used to store copies of data from frequently used locations of
main memory. It is generally quicker for the compute unit to
access data in the cache than the corresponding copies in main
memory. As aresult, data stored in a cache may differ from the
corresponding copy in main memory. A cache line containing
differing data may be termed “modified” or “dirty,” depend-
ing on, among other considerations, which cache coherency
protocol may be implemented by the computer system com-
prising the compute unit, whereas a cache line containing data
identical to the corresponding copy in main memory may be
termed “unmodified” or “clean.”

When a compute unit is directed to power down, one issue
to be addressed is the status of the cache. Commonly, when a
compute unit is directed to power down, the compute unit will
save off its architectural state to some memory retention area,
flush its caches of all differing data (i.e., complete any writing
of differing data from cache locations to main memory and
evict the differing data from the cache), and then signal its low
power readiness to the PMU. However, depending on the
amount of differing data in the cache, the process of flushing
the cache may be the most time-consuming part of the power-
down process. For example, saving off the compute unit
architectural state to memory (such as, but not necessarily,
main memory) may take 3000-5000 clock cycles, whereas
flushing a cache may take about two to five clock cycles per
differing cache line. It is not uncommon for a cache to have
tens of thousands of differing cache lines and require ~50,000
clock cycles (~50 psec in contemporary desktop computer
processors) to be completely flushed. The time spent on cache
flushing is time that the compute unit is powered up but
relatively inactive and thus wasting power and generating
unnecessary heat.

SUMMARY OF EMBODIMENTS

The apparatuses, systems, and methods in accordance with
the embodiments disclosed herein may facilitate power man-
agement of a compute unit by reducing the number of dirty
cache lines that must be flushed, thereby allowing quicker
powering down of the compute unit. Mechanisms controlling
and implementing such a process may be formed within a
microcircuit by any means, such as by growing or deposition.

10

15

20

25

30

35

40

45

50

55

60

65

2

Some embodiments provide an integrated circuit device
that includes a compute unit comprising a cache, wherein the
compute unit is configured to indicate it is attempting to enter
a low power state and flush at least one modified line of the
cache subsequent the indication; a power management unit
configured to permit the compute unit to enter the low power
state; and a cache rinser configured to detect at least one line
of the cache that differs from a corresponding line in a
memory and write differing data from the at least one differ-
ing line to the memory, wherein the cache rinser is configured
to detect and write at a first frequency prior to the indication
by the compute unit and at a second frequency subsequent the
indication, and the second frequency is higher than the first
frequency.

Some embodiments provide a method that includes detect-
ing at least one line of a cache of a compute unit that differs
from a corresponding line in a memory; writing differing data
from the at least one differing line ofthe cache to the memory;
and flushing at least one remaining line of the cache that
differs from a corresponding line in the memory; wherein the
detecting and the writing are performed at a first frequency
when the compute unit is in a high power state and at a second
frequency in response to the compute unit attempting to enter
alow power state; and the second frequency is higher than the
first frequency.

The embodiments described herein may be used in any
type of integrated circuit that uses a compute unit comprising
a cache, and a power management unit. One example is a
general purpose microprocessor.

BRIEF DESCRIPTION OF THE FIGURES

The disclosed subject matter will hereafter be described
with reference to the accompanying drawings, wherein like
reference numerals denote like elements, and:

FIG. 1is a schematic diagram of an exemplary microcircuit
design in accordance with some embodiments.

FIG. 2 is a schematic diagram of a central processing unit
depicted in FIG. 1, in accordance with some embodiments.

FIG. 3A provides a representation of a silicon die/chip that
includes one or more circuits as shown in FIG. 2, in accor-
dance with some embodiments.

FIG. 3B provides a representation of a silicon wafer which
includes one or more dies/chips that may be produced in a
fabrication facility, in accordance with some embodiments.

FIG. 41is a flowchart of a method relating to powering down
a compute unit comprising a cache, in accordance with some
embodiments.

While the disclosed subject matter is susceptible to various
modifications and alternative forms, specific embodiments
thereof have been shown by way of example in the drawings
and are herein described in detail. It should be understood,
however, that the description herein of specific embodiments
is not intended to limit the disclosed subject matter to the
particular forms disclosed, but on the contrary, the intention is
to cover all modifications, equivalents, and alternatives fall-
ing within the spirit and scope of the disclosed subject matter
as defined by the appended claims.

DETAILED DESCRIPTION

Embodiments provide for expedited powering down of a
compute unit comprising a cache. Because the cache must be
flushed before powering down the compute unit, reducing the
number of differing cache lines speeds up the flushing.
Thereby, powering down the compute unit may be performed
more quickly.

US 9,317,100 B2

3

Turning now to FIG. 1, a block diagram representation of a
computer system comprising a processor, in accordance with
some embodiments, is illustrated. Modern computer systems
may exist in a variety of forms, such as telephones, tablet
computers, desktop computers, laptop computers, servers,
smart televisions, or other consumer electronic devices. The
processor unit 110 may comprise one or more compute units
(CUs) 135. Each compute unit 135 may comprise a cache 140
that provides readily-accessible storage of data found in fre-
quently-accessed locations in main memory (e.g., DRAM
155).

The computer system 100 may also comprise a northbridge
145. Among its various components, the northbridge 145 may
comprise a power management unit (PMU) 132 that may
regulate the amount of power consumed by compute unit 135,
GPU 125, and/or other elements. Particularly, in response to
changes in demand for the compute unit 135, GPU 125,
and/or other elements, the PMU 132 may request compute
unit 135, GPU 125, and/or another element to enter a low
power state, exit the low power state, enter a normal power
state, or exit the normal power state.

The computer system 100 may also comprise a main
memory, such as a DRAM 155. The DRAM 155 may be
configured to store one or more states of one or more com-
ponents of the computer system 100. Particularly, the DRAM
155 may be configured to store one or more states of the
compute unit 135 and/or one or more states of GPU 125. For
example, the DRAM 155 may be configured to store an archi-
tectural state of compute unit 135. In addition, the DRAM 155
may be configured to store data accessible by and used in
operations by compute unit 135. The data stored in DRAM
155 may be copied to cache 140, and operations of compute
unit 135 may be performed on the data copies in cache 140.
However, as a result of operations of compute unit 135, cache
lines within cache 140 may contain data different from the
original copies stored in DRAM 155.

The computer system 100 may also comprise a cache rinser
199. Typically, during standard, normal power operations of
compute unit 135, the cache rinser 199 detects at least one
differing line of the cache 140 and writes differing data from
the at least one differing line to the memory (e.g., DRAM
155). In some embodiments, the cache rinser 199 writes with-
out evicting the at least one differing line from the cache 140.
During normal power operations of compute unit 135, the
cache rinser 199 detects and writes at a first frequency, by
which is meant, it scans a certain number of cache lines for
differing from the corresponding line in the memory, and
writes differing data from each differing line to memory, per
unit time. Writing differing data from a differing line to
memory removes the difference of the cache line. Generally,
the first frequency is less than a maximum frequency. In other
words, during normal power operations of the compute unit
135, the cache rinser 199 generally performs fewer detections
and writes than it theoretically could in the unit time. This is
typically desirable to reduce the consumption of bandwidth in
a data channel 195 between the compute unit 135 and the
memory (e.g., DRAM 155) by cache rinsing instead of
memory access more directly relevant to operations of the
compute unit 135.

After the compute unit 135 indicates it is attempting to
enter a low power state, the compute unit 135 may handshake
with the PMU 132 and may store its architectural state in
memory (e.g., DRAM 155, among other memories, such as a
higher level cache of the compute unit). In a processor with
multiple cache types, e.g. an L1 cache and an L2 cache,
storing the architectural state of compute unit 135 may
involve writing to and reading from .1 cache, whereas detect-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing and writing by the cache rinser 199 may involve reading
from [.2 cache. Because the compute unit 135 is not perform-
ing normal operations requiring access to memory (e.g.,
DRAM 155) during the process of writing its architectural
state to L1 cache, the cache rinser 199 may be allowed to
consume much, most, or essentially all bandwidth in a data
channel 195 between the compute unit 135 and the memory
(e.g., DRAM 155). Therefore, subsequent the indication and
prior to completion of the storing of the architectural state, the
cache rinser 199 may detect and write at a second frequency
higher than the first frequency. In particular embodiments, the
second frequency is the maximum frequency at which the
cache rinser 199 could operate.

The computer system 100 may as a routine matter com-
prise other known units and/or components, e.g., one or more
1/O interfaces 131, a southbridge 150, a data storage unit 160,
display unit(s) 170, input device(s) 180, output device(s) 185,
and/or peripheral devices 190, among others.

The computer system 100 may also comprise one or more
data channels 195 for communication between one or more of
the components described above.

Turning now to FIG. 2 and FIG. 3 A, in some embodiments,
the processor unit 110 may reside on a silicon die/chip 340.
The silicon die/chip 340 may be housed on a motherboard or
other structure of the computer system 100. In some embodi-
ments, there may be more than one processor unit 110 on each
silicon die/chip 340. Some embodiments of the processor unit
110 may be used in a wide variety of electronic devices.

Turning now to FIG. 3B, in accordance with some embodi-
ments, and as described above, the processor unit 110 may be
included on the silicon chip/die 340. The silicon chip/die 340
may contain one or more different configurations of the pro-
cessor unit 110. The silicon chip/die 340 may be produced on
a silicon wafer 330 in a fabrication facility (or “fab™) 390.
That is, the silicon wafer 330 and the silicon die/chip 340 may
be referred to as the output, or product of, the fab 390. The
silicon chip/die 340 may be used in electronic devices.

The circuits described herein may be formed on a semi-
conductor material by any known means in the art. Forming
can be done, for example, by growing or deposition, or by any
other means known in the art. Different kinds of hardware
descriptive languages (HDL) may be used in the process of
designing and manufacturing the microcircuit devices.
Examples include VHDL and Verilog/Verilog-XL.. In some
embodiments, the HDL code (e.g., register transfer level
(RTL) code/data) may be used to generate GDS data, GDSII
data and the like. GDSII data, for example, is a descriptive file
format and may be used in some embodiments to represent a
three-dimensional model of a semiconductor product or
device. Such models may be used by semiconductor manu-
facturing facilities to create semiconductor products and/or
devices. The GDSII data may be stored as a database or other
program storage structure. This data may also be stored on a
computer readable storage device (e.g., data storage units,
RAMs, compact discs, DVDs, solid state storage and the like)
and, in some embodiments, may be used to configure a manu-
facturing facility (e.g., through the use of mask works) to
create devices capable of embodying various aspects of some
embodiments. As understood by one or ordinary skill in the
art, this data may be programmed into a computer, processor,
or controller, which may then control, in whole or part, the
operation of a semiconductor manufacturing facility (or fab)
to create semiconductor products and devices. In other words,
some embodiments relate to a non-transitory computer-read-
able medium storing instructions executable by at least one
processor to fabricate an integrated circuit. These tools may
be used to construct the embodiments described herein.

US 9,317,100 B2

5

FIG. 4 presents a flowchart depicting a method 400 accord-
ing to some embodiments. As illustrated in FIG. 4, the method
400 may comprise: on an ongoing basis, such as during nor-
mal operation of a compute unit, wherein the compute unit
comprises a cache, detecting at 410a at least one differing line
of'a cache and writing at 420a differing data from the at least
one differing line to a memory. The method may loop through
the cache, detecting at 410a and writing at 420q on a line by
line basis. The detecting at 410a and the writing at 420a may
be performed at a first frequency. The first frequency is typi-
cally lower than the maximum frequency theoretically pos-
sible using hardware/software/firmware of a computer sys-
tem comprising the compute unit.

Periodically and/or in response to receiving an interrupt,
the method may consider at 430 whether the compute unit is
attempting to enter a low power state. As discussed above, for
the compute unit to enter the low power state, it may be
necessary to perform additional actions, such as saving at 440
an architectural state of the compute unit to a memory.
Depending on the properties of the compute unit and/or a
power management unit, in some embodiments, the method
400 may further comprise handshaking at 435 between the
compute unit and a power management unit in response to an
indication the compute unit is attempting to enter the low
power state.

If the check at 430 indicates the compute unit will remain
in a normal operation (e.g., a high power) state, flow may
return to the detecting at 410a and the writing at 420q.

In response to an indication the compute unit is attempting
to enter the low power state, detecting at 4105 and writing at
4205 may be performed at a second frequency, wherein the
second frequency is higher than the first frequency. In other
words, the same activities of 410a and 420a may be per-
formed, but at a higher frequency. In some embodiments, the
second frequency is the maximum frequency referred to
above.

In some embodiments, writing at 420a and/or 4205 is
performed without evicting the at least one differing line from
the cache.

Periodically and/or in response to receiving an interrupt, if
the architectural state of the compute unit is saved at 440, the
method may consider at 445 whether saving at 440 has been
completed. If not, flow may return to detecting at 4106 and
writing at 4205, i.e., at the second frequency. If any saving at
440has been completed, orif no saving at 440 was performed,
the method 400 may further comprise flushing at 450 at least
one remaining differing line of the cache. Typically, but not
necessarily, flushing at 450 may comprise flushing all remain-
ing differing lines of the cache. By detecting at 4106 and
writing at 4205 at the second frequency, the number of
remaining differing lines of the cache subsequent the hand-
shaking at 435, the saving at 440, and/or any other activities
preparatory for entry of the compute unit into the low power
state that may be performed in parallel with detecting at 4105
and writing at 4205, may be reduced relative to the number
that would have remained had detecting at 410a and writing at
420a been continued at the first frequency. Thereby, the time
required for flushing at 450 may be reduced. Once the at least
one, such as all remaining, differing cache line(s) are flushed
at 450, the method 400 may comprise permitting at 460 the
compute unit to enter the low power state.

The methods illustrated in FIG. 4 may be governed by
instructions that are stored in a non-transitory computer read-
able storage medium and that are executed by at least one
processor of the computer system 100. Each of the operations
shown in FIG. 4 may correspond to instructions stored in a
non-transitory computer memory or computer readable stor-

10

15

20

25

30

35

40

45

50

55

60

65

6

age medium. In various embodiments, the non-transitory
computer readable storage medium includes a magnetic or
optical disk storage device, solid state storage devices such as
flash memory, or other non-volatile memory device or
devices. The computer readable instructions stored on the
non-transitory computer readable storage medium may be in
source code, assembly language code, object code, or other
instruction format that is interpreted and/or executable by one
Or More processors.

The particular embodiments disclosed above are illustra-
tive only, as the disclosed subject matter may be modified and
practiced in different but equivalent manners apparent to
those skilled in the art having the benefit of the teachings
herein. Furthermore, no limitations are intended to the details
of construction or design herein shown, other than as
described in the claims below. It is therefore evident that the
particular embodiments disclosed above may be altered or
modified and all such variations are considered within the
scope and spirit of the disclosed subject matter. Accordingly,
the protection sought herein is as set forth in the claims below.

What is claimed:

1. A method, comprising:

detecting at least one line of a cache of'a compute unit that
differs from a corresponding line in a memory;

writing differing data from the at least one differing line of
the cache to the memory; and

flushing at least one remaining line of the cache that differs
from a corresponding line in the memory;
wherein the detecting and the writing are performed at a

first frequency when the compute unit is in a high
power state and at a second frequency in response to
the compute unit attempting to enter a low power
state; and the second frequency is higher than the first
frequency.

2. The method of claim 1, further comprising saving an
architectural state of the compute unit to a memory, in
response to the compute unit attempting to enter the low
power state.

3. The method of claim 2, wherein the detecting and the
writing are performed at the second frequency prior to
completion of the saving.

4. The method of claim 2, wherein the memory is a main
memory.

5. The method of claim 1, further comprising handshaking
between the compute unit and a power management unit in
response to the compute unit attempting to enter the low
power state.

6. The method of claim 1, wherein the writing is performed
without evicting the at least one differing line from the cache.

7. The method of claim 1, wherein the second frequency is
a maximum frequency.

8. The method of claim 1, wherein the at least one differing
cache line is a modified cache line.

9. The method of claim 1, wherein the at least one differing
cache line is a dirty cache line.

10. An apparatus, comprising:

a compute unit comprising a cache, wherein the compute
unit is configured to indicate it is attempting to enter a
low power state and flush at least one modified line of the
cache subsequent the indication;

a power management unit configured to permit the com-
pute unit to enter the low power state; and

a cache rinser configured to detect at least one line of the
cache that differs from a corresponding line in a memory
and write differing data from the at least one differing
line to the memory, wherein the cache rinser is config-
ured to detect and write at a first frequency prior to the

US 9,317,100 B2

7

indication by the compute unit and at a second frequency
subsequent the indication, and the second frequency is
higher than the first frequency.

11. The apparatus of claim 10, wherein the memory is
configured to store at least an architectural state of the com-
pute unit and at least one line of the cache.

12. The apparatus of claim 11, wherein the cache rinser is
further configured to detect and write at the second frequency
prior to completion of the storing of the architectural state.

13. The apparatus of claim 11, wherein the compute unit
and the power management unit are further configured to
handshake subsequent the indicating and prior to the storing
of the architectural state.

14. The apparatus of claim 10, wherein the cache rinser is
configured to write the differing data without evicting the at
least one differing line from the cache.

15. The apparatus of claim 10, wherein the second fre-
quency is the maximum frequency of the cache rinser.

16. The apparatus of claim 10, wherein the at least one
differing cache line is a modified cache line.

17. The apparatus of claim 10, wherein the at least one
differing cache line is a dirty cache line.

18. A non-transitory computer-readable medium storing
instructions executable by at least one processor to fabricate
an apparatus, the apparatus comprising:

a compute unit comprising a cache, wherein the compute
unit is configured to indicate it is attempting to enter a
low power state and flush at least one modified line of the
cache subsequent the indication;

10

15

20

25

8

a power management unit configured to permit the com-

pute unit to enter the low power state; and

a cache rinser configured to detect at least one line of the

cache differing from a corresponding line in a memory
and write differing data from the at least one differing
line to the memory, wherein the cache rinser is config-
ured to detect and write at a first frequency prior to the
indication by the compute unit and at a second frequency
subsequent the indication, wherein the second fre-
quency is higher than the first frequency.

19. The non-transitory computer readable storage medium
of claim 18, wherein the compute unit and the power man-
agement unit are further configured to handshake subsequent
the indicating.

20. The non-transitory computer readable storage medium
of'claim 18, wherein the cache rinser is configured to write the
differing data without evicting the at least one differing line
from the cache.

21. The non-transitory computer readable storage medium
of claim 18, wherein the second frequency is the maximum
frequency of the cache rinser.

22. The non-transitory computer readable storage medium
of claim 18, wherein the at least one differing cache line is a
modified cache line.

23. The non-transitory computer readable storage medium
of claim 18, wherein the at least one differing cache line is a
dirty cache line.

